

Thermal Studies of an Ultra-Low-Mass Cooling System for ALICE ITS Upgrade Project at CERN

European Centre for Nuclear Research (CERN), Geneva, Switzerland LTCM, École Polytechnique Fédérale de Lausanne (EPFL)

- <u>M. G. Marzoa</u> M. Battistin C. Bortolin J. A. B. Direito E. Da Riva C. Gargiulo
- S. Igolkin
- P. ljzermans
- Y. Lesenechal
- R. Santoro
- J. R. Thome

8th World Congress on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics Instituto Superior Técnico (IST), Lisboa. 20th June 2013

- Introduction
- Stave design and manufacturing
- Experimental facility
- Methodology
- Results
- Conclusion

ltcm

Design Parameters

- **1. Power dissipation:** pixel technology, electronics...
 - ➢ 0.3 − 0.5 W cm⁻²
- 2. Operational temperature and uniformity:
 - ➢ T_{PIXEL}< 30°C</p>
 - Pixel maximum temperature non-uniformity < 10 K</p>
- 3. Minimize material budget: critical in particle detectors.

- **Tubes:** Polyimide (↓ wall thickness). PEEK considered.
- Structure:
 - Carbon fiber (K13D2U, K1100): λ up to 1000 W m⁻¹ K⁻¹
 - Sraphite foil (30 μ m thick): $\lambda > 1000$ W m⁻¹ K⁻¹

Analytical/CFD studies

Experimental tests

Two Different Concepts

Itcm

Two Different Concepts

Cooling Fluid Selection

Requirement: T_{REFRIGERANT} > T_{DEW-POINT} (~12°C)

Fluid	Benefits	Concerns
Single-phase H ₂ O	Radiation hard Loop simplicity	Leak-less system Liquid: ↑ refrigerant x/X ₀
Two-phase C ₄ F ₁₀	Radiation hard Dielectric Vapor: ↓ refrigerant x/X ₀ Cooling at constant T	More complex loop Distribution (346 staves ITS)

$$T_{SAT} = 15^{\circ}C$$
, $P_{SAT} = 1.9$ bar

Experimental Facility

- Fast, simple way to characterize thermally the prototypes.
- Tested several prototypes with the 2 refrigerants.

ERN

1. No-flow tests:

- Power dissipated/absorbed to/from to room air
- Agreement T sensors

2. Single-phase flow tests:

- Pressure drop
- Energy balance
- General uncertainty

3. Two-phase flow tests:

- Thermal characterization
- Two-phase pressure drop

Test Parameters

1. Power dissipation: 270 x 13 mm Kapton® Heater

2. Mass flow rate:

$$\dot{m} = \frac{q}{h_{LG}\Delta x_{IN-OUT}} \begin{bmatrix} Power density Mass flow rate \\ q [W cm^{-2}] & \dot{m} [g s^{-1}] \end{bmatrix}$$
Assumptions
$$\begin{cases} \Delta x_{IN-OUT} = 0.40 \\ T_{REFRIGERANT} = 15^{\circ}C \end{bmatrix} & 0.5 \end{bmatrix}$$

Results: 0.5 W cm⁻²

Outcome

	Paran	neters	P1	P2
		ṁ [g s⁻¹]	0.40	0.22
0.3		G [kg m ⁻² s ⁻¹]	242	271
	T _{Max-H}	_{eater} – T _{Av-Ref} [K]	19.1	6.3
		Δp _{STAVE} [bar]	0.14	0.29

Material budget estimations	P1	P2				
x/X ₀ (Full stave + no refrigerant) [%]	0.23	0.29				
x/X ₀ (Full stave + water in tubes) [%]	0.30	0.32				
Optimized prototype: x/X ₀ <0.29% per layer						

Conclusions

- Two lightweight cooling proposals for ITS Inner Barrel modules were thermally characterized experimentally.
- Innovative solutions: towards a minimum mass.
 - $\checkmark\,$ High conductivity carbon fiber composites.
 - ✓ Plastic (polyimide tubing)
- CF high-conductivity plate prototype: balanced solution.
 - \checkmark Structural robustness at low mass (1.8 g).
 - ✓ Low material budget: $x/X_0 < 0.30\%$ per module.
 - ✓ $\Delta T_{\text{HEATER-REFR}}$ < 15 K at high power density (0.5 W cm⁻²).
 - $\checkmark\,$ Refrigerant: open choice (\uparrow thermal resistance at prototype).

Thank you

Acknowledgements:

- CERN EN-CV Group for financial support.
- ALICE Collaboration for the opportunity to work in the ITS Upgrade Project.
- Prof. J. R. Thome for valuable advice and help.
- M. Battistin, E. Da Riva and C. Gargiulo (CERN) for their time and patience.

Backup slides

Material Benchmarking

Material	Туре	Uses	Characteristics
K13D2U-2k	CE	Mechanical structure High-Conductivity Plate	λ ~ 800 W m ⁻¹ K ⁻¹
K1100 Thornel	prepreg	High-Conductivity Plate	λ > 1000 W m ⁻¹ K ⁻¹
FGS003	Graphite foil	Enhance thermal contact	λ ~ 1500 W m ⁻¹ K ⁻¹
Polyimide	Polymer	Tubes Bends (research ongoing)	Robust X ₀ = 29 cm
PEEK	Polymer	Enclosures Tubes Connectors	Robust Not very flexible Thick wall X ₀ = 29 cm

Experimental Facility

Stave view as from the IR camera.

P2 prototype.

Leak-less water plant. 6/17/2013

Stave test setup.

 $C_4 F_{10}$ loop and plant.

M. Gómez Marzoa

No-Flow Tests

Procedure:

- 1. Apply low power and record the average stave temperature.
- 2. Correlate power dissipated to air vs. average stave temperature.
- 3. When cooling the stave with full power, the power dissipated/absorbed

No-Flow Tests

Assumption: average ambient temperature = 21°C

 $\mathsf{T}_{\mathsf{MAX-STAVE}} = \mathbf{30^{\circ}C} \rightarrow \Delta \mathsf{T}_{\mathsf{STAVE}-\mathsf{AMB}}_{\mathsf{MAX}} < \mathbf{9} \mathsf{K}$

P2: 1.2 W to room air (~12% of power applied, 0.3 W cm⁻²)

VAPOUR QUALITY:

Thermal Characterization

Global P2 prototype thermal resistance

M. Gómez Marzoa

P1: H_2O vs. C_4F_{10} @0.3 W cm⁻²

OUTLET	H ₂ O	Q [L h ⁻¹]	∆p _{St} [bar]	v [m s- ¹]	Т _{н20-IN} [°С]	ΔΤ _{Η20} [K]
	34 3 34 3 34 7 34 8 34 6 34 5 + + + + + + + 34 6 34 5 + + + + + + + + + + + + + + + + + + +	3.1	0.06	0.54	15.1	2.4
-40.0 -38	33,3 33,9 34,0 33,6 33,6	4.9	0.20	0.84	14.8	1.5
-36 -34	32_{+}^{6} 32_{+}^{9} 33_{+}^{0} 32_{+}^{8} 32_{+}^{8}	8.5	0.46	1.47	14.7	0.7
-32 -30	312 318 318 314	12.1	0.73	2.09	14.7	0.6
-28 -26	BEND C ₄ F ₁₀	m [g s⁻¹]	∆p _{St} [bar]	x _{in} [-]	x _{Out} [-]	Av.T _{C4F10} [°C]
⁻²⁴ (57 4	<mark>≥</mark> 0.16	0.06	0.08	0.92	15.0
■ [∟] 21.0 ℃	32.7 +	0.20	0.07	0.08	0.75	13.7
	32.3 +	0.40	0.14	0.08	0.42	14.0
	32.8 +	0.60	0.20	0.06	0.31	14.5

P1: H_2O vs. C_4F_{10} @0.5 W cm⁻²

OUTLET	H ₂ O BEND	Q [L h ⁻¹]	∆p _{St} [bar]	v [m s ⁻¹]	Т _{н20-IN} [°С]	ΔΤ _{Η20} [K]
) 8.0	0.43	1.38	14.7	1.5
-48.0 -45		12.2	0.77	2.11	14.8	1.2
-42 -39	BEND C ₄ F ₁₀	m [g s⁻¹]	∆p _{St} [bar]	× _{In} [-]	x _{Out} [-]	Av.T _{C4F10} [°C]
-36 -33	44.8 +	<mark>→</mark> 0.4	0.17	0.06	0.65	14.3
-30	45.4	0.6	0.26	0.05	0.46	14.9
-24	46.0	0.8	0.33	0.03	0.36	15.5
■ └─21.0						

- Results independent of the mass flow rates.
- Controlling the vapor quality at the inlet/outlet is very important.

C

-63.0

C

P1: C₄F₁₀ tests discussion

➤ Two extreme cases: -46.0

-42	Case: 0.3 W cm ⁻²	m	∆p _{St}	x _{In}	x _{Out}	T _{C4F10-Out}
-39		[g s ⁻¹]	[bar]	[-]	[-]	[°C]
-36 -33 -30	45.9 +	0.8	0.28	0.04	0.26	13.3

- Low vapor quality at stave entrance.
 - \uparrow m, \uparrow HTC, but $\uparrow \Delta p$. Since p_{Out} = constant, $\uparrow p_{Inlet}$, $\uparrow T_{sat-Inlet}$, $\uparrow \Delta T_{Fluid}$

5 0 5	Case: 0.5 W cm ⁻²	m [g s ⁻¹]	Δp _{St} [bar]	x _{In} [-]	x _{Out} [-]	T _{C4F10-Out} [°C]
40 35		0.2	0.09	0.08	1.20	21.0

- Low vapor quality at stave entrance:
- Mass flow rate too low: superheated vapor at stave outlet

P2: H₂O @**0.3 W cm⁻²**

	BEND	Case	INLET/OUTLET	Q [L h ⁻¹]	∆p [bar]	Т _{н20-IN} [°С]	ΔT _{H20} [K]
(282 4		3.0	0.23	15.2	2.4
-26		24,5		5.0	0.25	15.0	1.6
-24 -23		240		6.5	0.34	15.0	1.2
-22 -21	And Anna and	241	A STREET	8.0	0.54	14.7	1.2
-20 -19		2322 4		10.0	0.62	14.9	0.7
-18 -17.0		22.8 +		12.0	0.84	15.0	0.6
U		22,4 +		15.0	1.18	14.8	0.6

P2: H₂O @0.5 W cm⁻²

	BEND	Case	INLET/OUTLET	Q [L h ⁻¹]	Δp [bar]	Т _{н20-IN} [°С]	ΔT _{H20} [K]
(32		3.0	0.24	15.4	3.9
-35.0 -34		28.8 4		5.0	0.30	14.9	2.5
-32 -30		29.5 +		6.5	0.34	15.0	1.9
-28		301 4		8.0	0.54	14.9	1.5
-26 -24		28.1 +		10.0	0.60	14.9	1.3
-22		27,1 4		12.0	0.84	15.0	0.9
U		271 +		15.0	1.18	14.9	0.9

R&D Phase

ULTRA-LOW-MASS COOLING SYSTEMS

- Analytical & CFD studies: find optimal arrangement:
 - > Minimal structural x/X_0 (materials, thicknesses).
 - Best thermal performance with minimum tube ID.
 - Mechanical stiffness and simplicity.

38.05

38.62

39.19

39.75

40.89

40.32

ALICE ITS Upgrade Project

- ALICE: experiment at CERN LHC.
- ITS Upgrade Project: replace Inner Tracker System.
 - Goal: design & implementation of new cooling system.

PROJECT SCHEDULE

2012-2014 R&D phase

Study technology proposals.

2013 Selection of technologies. Qualification studies.

Final design and validation. Integration & final testing.

2015-2018 Construction and Installation

ALICE Experiment

Detector Power Dissipation

Inner Barrel geometrical constraints.

Full ITS sectional view.

ltcm